
SIC''- .. . . .. ... . . ... . .-

r 'ORT DOCUMENTATION PAGE

AD-A204 219 lb. RESTRICTIVE MARKINGS (

7a* 3. DISTRIBUTIONJAVAILABILITY OF REPORT

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;
Distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

Ben Gurion University of I (f applicable) European Office of Aerospace Research
S the. Negev ,, and Development

6c. ADDRESS (Gey, State, and ZIP Code) 7b. ADDRESS (Ci), State, and ZIP Code)
Department of Mechanical Engineering Box 14
P.O.B. 653 FPO New York 09510-0200
Beer Sheva 84 105, Israel

.B. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION European Office oq Of applicable) AFOSR 86-0349I Aerospace Research & DevelopmerO LRC

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Box 14 PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. WO. ACCESSION NO.
York 09510-0200 61102F 1 2301 D I

11. TITLE (Include Security Classification) A NUMERICAL INVESTIGATION OF THE FLOW FIELD DEVELOPED BEHINDI (A) AN OBLIQUE SHOCK WAVE PROPAGATING INTO A DUSTY GAS, (B) A NORMAL SHOCK WAVE PROPAGATING
INTO A DUSTY GAS HAVING DUST PARTICLES OF VARIOUS SIZE

12. PERSONAL AUTHOR(S) Professors G. Ben-Dor and 0. Igra
1 TIM, COVERED 14. DATEOFREPORT (Year, Month. Day) S. PAGE COUNT

E fic IFRO'M * VSep86 To3lAug88 1988 October

16. SUPPLEMENTARY NOTATION

17. COSATI CODES B. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Dusty Shock Waves, Solid-Gas Suspensions, Two Phase Flows

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

7- 'The dependence of the shock induced flow field on non-uniformities of the various physical
properties of the dust (namely, the diameter, the material density and the heat capacity)

were investigated numerically. The flow field which is developed when a dusty gas steady

suspension passes through an oblique shock wave was investigated numerically. In addition,
the dependence of the shock induced flow field on the various physical properties of the

dust was investigated. ( -

QTIC
AfELECTrEFEB 1989

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

,rUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 OTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) . OFFICE SYMBOL
CHESTER J. DYMEK, JR, Lt Col, USAF (44 1) 409-4384 EOARD/ LRC

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.



This report has been reviewed by the EOARD Information Office and is
releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

CHESTER J. yma Lt Col A

FRED T. GILLIAM, Lt Col, USAF
Chief Scientist

Accession ForNiS-- GRA&I D-

DTIC TAB W

Unannounced []
6Justification

By
Distribution/

Availability Codes

lot Special

LA 

III 

Iii



A Numerical Investigation of the Flow Field Developed Behind

a) An Oblique Shock Wave Propagating into a Dusty Gas

b) A Normal Shock Wave Propagating Into a Dusty Gas Having Dust

Particles of Various Size

Final Report

Prof. G. Ben-Dot

Prof. 0. Igra

Period: Oct. 1, 1986 - Sept. 30, 1988

Contract: AFOSR-86-0349



lrntrouction

Since the research project consists of two parts, this final report is

also divided into the corresponding two parts. The first part summarizes our

numerical results on the flow of a dust-gas suspension through an oblique

shock wave, and the second part deals with the flow of a dust-gas

suspension having various distributions of the properties of the dust

particles through a normal shock wave.

, I I i I 

MI 
I 

i



Part I

The Flow of a Dust-Gas Suspension

Through an Oblique Shock Wave



Abstract

The equations governing the flow field which is developed when a
supersonic dusty-gas suspension posses through a straight oblique snock
wave were formulated. A computer code for solving the governing equations
was developed and used to obtain the solution for a variety of different
initial conditions.

In addition, the dependence of the post-shock suspension properties
on the various physical properties of the dust particles, (ndmely the
diameter of the dust particles, their specific heat capacity, their material
density and the loading ratio of the dust in the suspension) was
investigated.

Nomenclature
A - envelope area of the solid particle znD2

C - specific heat capacity of the solid particle
CD - drag coefficient
Cp - specific heat capacity at constant pressure of the gaseous phase
Cv - specific heat capacity at constant volume of the gaseo, s phase
D - diameter of the solid particle
FD - arag force
k - thermal conductivity
M - fIow Mach number
mp - mass of a solid particle
Nu - Nusselt number
n - a co-ordinate normal to the oblique shock wave
np- rumber density of the solid particles
P - suspension pressure
Pr - Prandtl number
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QN.T. - rate of heat per unit volume transferred from the gaseous to the solid
phase

R - specific gas constant
Re - Reynolds number
S - cross section of the solid particle = %D2/4
T - temperature
u - velocity of gaseous phase
v - velocity of the solid phase

V - specific heat capacities ratio = Cp/Cv
# - angle of incidence
0 - flow deflection angle
# - dynamic viscosity
p - spatial density
a - material density

- loading ratio of the solid phase in the suspension ppo/pgO

Subscripts
g - gaseous phase
n - normal component
p - solid phase
s - tangential component
x - horizontal co-ordinate
y - vertical co-ordinate
0 - flow state ahead of the shock wave
I - flow state behind the shock wave

Introduction
The interest in the gas-dynamic behaviour of a gas-particle

suspension grew in the past three decades due to its application to many
engineering problems. Some typical examples are: metallized propellents of
rockets, jet-type dust collectors and blast waves in dusty atmospheres. In
addition, mixtures with gases heavily laden with particles occur frequently
in industrial processes such as plastics manufacturing, flour milling, coal-
dust conveying, powder metallurgy and powdered-food processing. General
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descriptions of such flows can be found in several books and review papers
ISoo (1967), Marble (1970) and Rudinger (1973))

The major differences between the flow fields which are developed
behind a normal shock wave In a dusty-gas and a pure (dust-free) gas are
illustrated in figures la and b for the temperatures and the velocities,
respectively. When a steady pure gas encounters a normal shock wave it
experiences a sharp (almost discontinuous) change in its thermodynamic and
kinematic properties. This sudden change is shown in figure I to occur
between (0) and (1). The thickness of this disturbance, If, is only a few
mean free paths of the gas atoms or molecules (about 6.6 x 10-6 cm in
standard conditions). Beyond () the gas properties remain constant (solid
lines in figures la and b) provided the gas conditions at (I) are not
sufficient to excite the internal degrees of freedom of the gas.

If, however, the gas is laden with solid particles then the suspension
which was originally at a state of thermodynamic and kinematic
equilibrium, ahead of the shock front, is suddenly changed into a non-
equilibrium state, because the solid particles, due to their size compared
with If, do not experience any noticeable change in their properties upon
moving from (0) to (I). Thus, at (1) the gas has a much higher temperature
than the dust, T9 > > Tp and a much lower velocity u ( v . Morgenthaler
(1962) indicated that this is true even if the particle diameter is as small
as 0.1 pm (for shock waves in air at nearly standard conditions, where the
mean free path is about 0.066 pm). Therefore, the particles are not
influenced by the initial disturbance, and the gas properties at (I) can be
safely assumed to be identical to those of a pure gas with the same initial
conditions.

Far downstream of (I), I.e., at (o) in figure I, the gas and the solid
phases reach a new state of thermodynamic and kinematic equilibrium via
momentum and energy exchange. Theoretically all shock waves in dusty
gases are infinitely thick, since equilibrium is approached asgrmptotically.
However, it is a common practice to assign to the shock wave an effective
thickness which is defined by a requirement that the suspension properties
come close to their equilibrium downstream values. It was shown by
Gottlieb & Coskunses (1985) that the suspension equilibrium properties (at
infinity) can be calculated from the usual normal shock wave relations,
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provided that the usual pure gas parameters j and R (the specific heat
capacities ratio and the specific gas constant) are replaced by effective
values V ahd R which solely depend orl the initial conditilons of the

suspension.
Between (1) and (cc) the solid particles are not in equilibrium with

the gas. The flow region between (1) and (co) is known as the relaxation
zone, for it is analogous to the relaxation zone in pure gases where the
internal degrees of freedom are excited. The extent of the relaxation zone
strongly depends on the momentum and heat transfer mechanisms which
enable the solid and the gaseous phases to reach a new equilibrium state.
The analysis of the relaxation zone was studied by many investigators. The
pioneering works of Carrier (1958), Kriebel (1964) and Rudinger (1964)
verified the existpr".j of this relaxation zone and identified the parameters
affecting it, namely; the solid particle diameter, D, its specific heat
capacity, C, its material density, a, and the loading ratio, q. Igra & Ben-oar
(1980) compared various correlations for the drag coefficient, C0 . and the
heat transfer coefficient, Nu, and pointed out their effect on the extent of
the relaxation zone. In addition they studied the role of thermal radiation
heat transfer between the two phases and showed that it can be neglected
when the incident shock waves Mach number is smaller than five.

In all the above mentioned works, as well as in many others, the
gaseous phase was assumed to behave as a perfect gas. This assumption
was relaxed by Ben-Dor& Igra (1982) and Igra & Ben-Dor (1984) who solved
the flow field while accounting for real gas effects. Dissociating nitrogen
was the gaseous phase in the latter work and ionizing argon in the former.

The assumption that the solid particles are inert, which was also
adopted in most of the published studies, was relaxed by Elperin, Ben-Oar &
Igra (1986) who solved the flow field of an oxygen-carbon suspension
passing through a normal shock wave, behind which the temperature of the
carbon particles reached their ignition temperature and burned out.

The assumption of uniform solid particles was relaxed by Elata. Ben-
Dor& Igra (1988) who solved the case of size-distributed solid particles.

In all the above mentioned solutions the flow field was one-
dimensional and steady. The aim of the present study was to solve the case
of a two-dimensional steady flow. This is the case when the shock wave is



5

oblique. There are many incidences where the shock wave is oblique. For
example, one can mention the shock wave generated by a supersonic vehicle,
the shock wave which is developed at the entrance nozzle of a rocket engine
and the reflected shock waves which arise when an explosion generated
blast wave interacts with man-made structures. In all these cases the
shock wave is oblique and, hence, unlike the previously mentioned cases the
resulted flow field behind the shock wave is two-dimensional.

The aim of the present study, therefore, is to solve the flow field
which is developed when a supersonic dusty gas suspension passes through a
straight oblique shock wave.

Figure 2 illustrates schematically the problem to be solved. A dust
gas suspension which Is in a thermal and kinematic equilibrium encounters
an oblique shock wave. The angle of incidence is t (sometimes known as the
wave angle). As mentioned previously, upon the passage of the suspension
through the shock wave, the properties of the gaseous phase assume a new
state, known as the frozen state, immediately behind the shock front, while
the solid phase passes through the shock wave unaffected. Due to the fact
that the shock wave is oblique, the streamline of the gaseous phase is
deflected by an angle, 8g, while the trajectory of dust particles remains
unchanged. Thus, in addition to the differences in the properties of the two
phases which were mentioned previously, here there is also a difference in
the direction of propagation of the two phases. The two phases which are no
longer in equilibrium, start exchanging momentum and energy until they
finally reach a new thermal and kinematic equilibrium. Here, kinematic
equilibrium means that, in addition to equal velocities, the two phases also
reach the same direction. The flow region inside which the two phases are
in non-equilibrium, i.e., the relaxation zone, is also shown in figure 2.

Theoretical Background

Assumptio-ns

The assumptions upon which the present model is based and their
implications are listed in the following:
I) The gaseous phase behaves as an ideal gas. Thus, the equation of state

of the gas Is P = pgRT9. Note that It Is not assumed here that the gas is
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calorically ideal. Alternatively, the dependence of both Cp and Cy on
the gas temperature is accounted for. This has not been done in
previous studies where both Cp and Cv were assumed to be constant.

2) All solid particles are rigid, inert small identical spheres uniformly
distributed in the gaseous phase. Thus there is no heat addition or
reduction due to chemical processes between the solid and the gaseous
phases. Furthermore, Re and Nu are based on the particle diameter, 0.

3) The volume of the solid phase in the suspension can be neglected. Thus
the momentum and energy exchange among the solid particles can be
ignored.

4) Aside from momentum and energy interactions between the gaseous and
the solid phases, the gaseous phase is considered to be a perfect flow,
i.e., the dynamic viscosity, pg, and the thermal conductivity, k9. are
zero. This also implies that neither kinematic nor thermal boundary
layers develop around the solid particles.

5) The dynamic viscosity. pg, the thermal conductivity. kg, and the
specific heat capacity at constant pressure, Cp, of the gaseous phase
depend solely on its temperature, Tg.

6) The solid particles are too large to experience any change in their
thermodynamic and dynamic properties upon their passage through the
shock front. In addition they are also large enough not to experience
Brownian motion. Thus, the partial pressure of the solid phases can be
neglected.

7) The solid particles are small enough to satisfy the condition Bi ( 0.1,
where Bi is the Blot number, Bi = hr/kp (h is the coefficient of

connection heat transfer, r is the radius of the solid particle, and kp is
its thermal conductivity). Thus the temperature within the solid
particles can be assumed to be uniform.

8) The weight of the solid particles and the buoyancy forces experienced
by them are negligibly small in comparison with the drag forces acting
on them.

9) The specific heat capacity, C, of the solid particles is constant.
10) Ahead of the normal shock wave the suspension is at a state of

t'hermodynamic and kinematic equilibrium, i.e., uo = vo and Tg0 = Tpo,

where u and v are the velocities of the gas and the solid particles, and
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T9 and Tp are the temperatures of the gaseous and solid phases,
respectively.

11) Oased-on the dens.-g ratio of the two phases 1/2500, the virtual moss
which depends on this ratio Is neglected.

In addition to the above listed assumptions it is assumed that the flow fielo
under consideration is two-dimensional and steady.

If the entire problem is analyzed in the (s,n)-plone, where the s-axis
is parallel to. the shock wave front and the n-axis is normal to the shock
wave front, then the problem at hand can be considered as one-dimensional.
Note that the _s-component of the velocities of the two phases immediately
behind the shock front are Identical, i.e., u13 = vi3. For this reason the
relative velocity between the two phases in the s-direction is zero, and
therefore there are no .rag forces in the s-direction. As a consequence,
there are no changes in the velocity components in the s-direction and they
remain constant in the entire flow field. From symmetrical considerations,
it is obvious that all the properties of the suspension must remain constant
along n=constant lines, i.e., along lines which are parallel to the s-axis.
Therefore, the partial derivative of any of the suspension properties with
respect to s is zero.

Governing Equations
Based on the foregoing discussion and assumptions, the governing

equations for the problem at hand are:
- conservation of mass of the gaseous phase:

-- d (p9 un) = 0 (1)

- conservation of mass of the solid ph.se:

d (ppvO) :0 (2)d(n
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- conservation of linear momentum of the gaseous phase:

dun dultCP zF
pgua dn d Von '(3)

- conservation of linear momentum of the solid phase:

ppVn : -Fn (4)

- conservation of energy of the gaseous phase:

d .L
PIUI r (CpTg * U 2) = QWi.T. ' FDBn (5)

- conservation of energy of the solid phase:

ppVn (Ulp ' v2) = "QH-T. - FODvn (6)

where pg and pp are the spatial densities of the gaseous and solid phases, un
and vn are the velocity components of the gaseous and solid phases in the n-
direction, Tg and Tp are the temperatures of the gaseous and solid phases. P
is the pressure of the suspension, Cp is the specific heat capacity at
constant pressure of the gaseous phase, C is the specific heat capacity of
the solid particles, QL.T is the amount of heat transferred per unit volume
from the gaseous phase to the solid phase and FDA is the drag force per unit
volume applied by the gaseous phase on the solid particles.

Thus, if CP, C, QH.T and FDn are expressed in terms of the dependent
variables namely; pg. Pp, Un. Va. Tg. Tp and P. then the above set of six
conservation equations contain seven unknowns. The seventh equation which
is required to make the above set of equations solvable, is the equation of
state of the gaseous phase; i.e.,

P = pg R Tg (7)
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In the following, the above mentioned complementary equations are
developed.

The drag force per unit volume can be obtained by multiplying the
drag force acting on a single solid particle by the number density of the
solid particles.

Fon = P p CD (vA-un)v 0-u.S np (8)

where CD is the drag coefficient, S Is the projected cross section of the
solid spherical particle (i.e., S = tJD2/4, where D is the diameter of the solid
particles), and np the number density of the solid particles can be calculated
from

np= (9)

where mp is the mass of a single solid particle (i.e., mp = an0 3/6, where a is
the material density of the solid particles).

The drag coefficient, CD, is usually expressed as a function of the
Reynolds number, Re, which in turn depends on the slip velocity Ivr-uQI. For
this reason, the Re number is very high immediately behind the shock wave
while its magnitude vanishes towards the end of the relaxation zone, where
vz : un, is approached. For this reason two different correlations for the
drag coefficient Co are used:
For Re ( 800

CD = - 0 * 0. 15 ReO. 687) (i0a)

and for 500 (Re ( 3x 105

24 0.42
C .-- (I •0.15 Re0 687) 1#42500 Re- 1.16  (l01)

oth of these correlations were taken from Clift, Grace & Weber (197B). The
Reynolds number Is calculated from:
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Re 0 qVA-JnID ( i)

where yg, the dynamic viscosity of the gaseous phase, is calculated by the
expression suggested by Mazoro Ben-Dor& Igra (1985) which reads:

T 0.65# r( )q
where Yr is the dynamic viscosity of the gaseous phase at a reference
temperature Tgr .

The heat transferred per unit volume from the gaseous phase to the
solid phase can be obtained by multiplying the heat transferred to a single
particle by thq number density of the solid particles, i.e.,

QH.T = Ah(Tp-Tg)np (13)

where A is the surface area of the solid spherical particle (i.e., A = nD2) anid
h the coefficient of heat convection can be calculated from

_Nukh (14)

where kq is the thermal conductivity of the gaseous phase and Nu the
Nusselt number is a function of the Reynolds number, Re, and the Prandtl
number, Pr, which is defined as

Pr = . C (15)
~kg

The correlation for Nu which was used in the present study is taken
from Drake (1961). It reads:

Nu = 2 * 0.459 Pr1/ 3 ReO. 55
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As mentioned in assumption (5) the Specific heat capacity at constant

pressure, Cp, and the thermal conductivity, k9, depend solely on the

temperature of the gaseous phase, To. For this reason the gaseous phase was
identified as air. For air (Holman, 1901, p. 542) in the range
300 (TV < 2500K

ko = 0.0125 * 5.509 x 10-5 To (16)

and from Van Wylen & Sonntag (1970) p. 683

Cp: :39.06- 512.79 ( I * 1072.7 ( ).2 -020.4 0 T)o-

this condition is good for 300 < T9 <3500 K.

Numerical Solution
Now we are at the stage where the governing equations are well

defined, i.e., the number of independent variables is equal to the number of
equations and all the non-dependent variables can be expressed in terms of
the dependent variables and other known parameters.

As can be seen, the governing equations of the problem at hand
consist of seven non-linear differential equations which must be solved

simultaneously in order to obtain the spatial distribution of the flow

properties.
Numerous computer code packages, capable of numerically solving

non-linear differential equations, are available, e.g., the IMSL (international
Mathematical and Statistical Libraries). This package contains three

different computer codes for solving a given set of differential equations
provided the initial conditions are known. (As will be shown subsequently,
the initial conditions in the case at hand are indeed known.) The most
accurate code out of these three codes is DREBS. It is based on the

extrapolation method, and Is superior when very high accuracy is required
and when the calculation of the derivatives is not expensive.

Fortunately, %1e relative simplicity of the governing equations of the
problem at hand, enables one to rewrite them in a form where the
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derivatives of the dependent variables are isolated, and hence can be
calculated very quickly and cheaply (computer-wise). The rewritten set of
the governing equations can be changed to the following form: .

. iOQ.T.*FDV - U2-RTqIdn= P u[C Ru2 1(7
d,- - uz - RT7

IFD - pR, "dT
du R dn
dn u - RT

dP /jj Toj du\ 19._ pgR _ u. )

d: du (20)

dTO 9U., 21dn 
2CppV

dv FO (22)
dn ppv

dpp ppd (23)
dn v d(

The Initial Conditions
As mentioned earlier, the problem at hand is such that the initial

conditions, i.e., the values of the dependent variables at x = 0 (at state (1) in
figure II can be easily calculated.

Based on the fact that the thickness of the shock wave front is orders
of magnitude smaller than the diameter of the solid particles, it is a
common practice to assume that:
I. The gaseous phase experiences the well known "frozen" change upon Its

passage through the shock wave.



13

2. The solid phase remains unaffected as it passes through the shock wave.
The above assumptions imply that while the properties of the solid

phase immediately behind the shock wave front are identical to.Xhose ai..ad
of it, the properties of the gaseous phase can be calculated using the well
known Rankine-Hugoniot relations which relate the gas properties in both
sides of the shock wave. More specifically;

[ 1.) 21
P9 Poo Lr 0~2 (24)

. l M

2( C) 1- 0 )(2 I b 2 (26)

TgI:Tgo[ ( (1) 2,,] (26

L 2(r 1) 0

M2 ' 2

MI =- 0 V° . I(27)
2V) M... M2  1,
r, 0

UI = lMt 1yRT91  (28)

where subscripts '0' and 'I* denote the flow states Immediately ahead and
behind the shock wave. M is the Mach number of the gaseous phase, i.e.,
M = u/a (a, the local speed of sound, is simply calculated from a = (y R T)1 /21.

Note that when MO 4 1, i.e., when the shock wave degenerates to a
Mach wave, then there is no change in the properties of the gaseous phase as
it passes through the shock wave.

Since the model at hand assumes that the gaseous phase behaves as a
perfect gas the upper value of MO which can be used Is limited, since as
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"10 4 oo T9 a c0. In the case of a diatomic gas, such as oxygen (02), nitrogen
(N), etc., MO a 6 is usually taken as the upper limit for which the
assumption of a perfect gas behaviour is valid. For monatomic gapes such as
helium (He), neon (Ne), argon (Ar), etc., the upper limit of Mo is even higher.
Beyond these limiting values, real gas effects must be accounted for. The
ways of treating such cases are discussed by Ben-Dor and Igra (1982) and
Igra and Den-Dor (1984).

Complementary Equations
Once the set of the governing equations is solved, the velocity

vectors of each of the two phases can be calculated from:

.~ A A
u: =u n * u3 s (29a)

A A(2)V =r n * V3 S (29b))

The absolute velocities of the two phase are therefore:

I u u 2 * u2) 1/2 (30a)

0 3

The deflection of the gaseous phase streamline, 8g, from its original

direction can be calculated from

B9 :* - tan- 1. (3 1 a)U3

Similarly, the deflection of the dusty phase streamline, 6p, is

8v # - tant -n (3 1D)
V3
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Obviously, when the suspension reaches a new equilibrium state at the end
of the relaxation zone the flow directions of the two phases become parallel
and hence 696 opm.

The velocity components of the gaseous and the dusty phases in the
(x.y)-coordinate system shown in Figure I can be calculated from:

ux = un sirs + u3 COS4 (32a)

uy = -u0 cos# + u3 sin (32b)

and similarly for the solid phase:

Vx = Yn sin v V3 C05 (33a)

vy = -vn COSe * vS sin (33b)

Numerical Results
As mentioned earlier, the problem at hand can be treated as one-

dimensional by solving it in the (sn)-plane. For this reason, the flow
profiles shown in Igra and Ben-Dor (1980), for example, are all applicable
for the case of oblique shock waves, provided the flow Mach number M0 is
replaced by 11o siri and the x-axis is replaced by the n-axis. Note that if the
angle of incidence is set to # = 900, then the oblique shock wave becomes
normal to the oncoming flow, and the general case of an oblique shock wave
degenerates to the well known one-dimensional normal shock wave case.

Since the change of the flow properties in a direction normal to the
oblique shock wave front as well as the dependence of these properties on
the physical properties of the dust particles can be deduced from Igra and
Ben-Dor (1980), in the following only results which are unique to the fact
that the shock wave is oblique tre presented.

The Gas Deflection - 89
As mentioned earlier, the direction of the streamline of the gaseous

phibse changes continuously from Its 'frozen' direction to its 'equilibrium'
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direction. In the following, the dependence of the flow deflection angle, 89,
on the physical properties of the dust is discussed.

The dependence of the flow deflection, 8q, on the dust lqading ratio,
1. is illustrated in figure 3, for tic z 3 and $ : 300. The dust physical
parameters are D = I 0pm, C = I OOOJ/(KgmK), a I 5OOKgm/m 3 .

As can be seen the frozen value of %q, i.e., 89 at n = 0 is identical for
all the cases. However, the larger the loading ratio is, the greater the
equilibrium flow deflection becomes. The dashed lines are the values
calculated by the equivalent gas concept presented in the introduction,
which should be reached at the end of the relaxation zone.

It is also evioent from figure 3 that the larger the loading ratio is,
the shorter the relaxation length becomes. While for rl = 0.1 it takes about
Om for the gaseous phase to reach the equilibrium deflection angle, only 3m
are required when q = 2.

The deflection angle at the end of the relaxation zone, Seq . as a
function of the dust loading ratio, q, is shown in a different way in figure 4
for MO = 4,$ = 600, 0 = I OOpm, C = I OOOJ/(KgmK) and a = 1500Kgm/m 3.

The fact that the equilibrium deflection angle increases with
increasing loading ratios is clearly seen in figure 4. However, it is evident
that as ri increases the rate of increase of the equilibrium deflection angle
decreases and it seems that there is an upper limit on 8g., as q assumes

very high values.
The dependence of the deflection angle, 8g, on the diameter of the

solid particles is shown in figure 5. Again MO = 3 and # = 300. The dust
properties are q = 0.5, C = IOOJ/(Kgm K) and a = 1500Kgm/m 3 .

Since the loading ratio, q, and the specific heat capacity of the dust
particles, C, are the some for the cases, the equilibrium values at the end of
the relaxation zone are identical. However, it is evident from figure 5 that
the smaller the diameter of the solid particle is, the shorter the relaxation
length becomes.

The dependence of the deflection angle, Sq, on the specific heat
capacity of the solid particles, C, for MO : 3 and * : 300 is shown in figure
6. The properties of the solid phase are q : 0.5, D 100m and
a = 1500Kgm/m3. It is evident from figure 6 that higher values of the
specific heat capacities result in larger deflections at the end of the
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relaxation zone. 1he length of the relaxation zone is not seen to strongly
depend on the specific heat capacity.

The dependence of the deflection angle, 8g, on the material density of
the solid particles for 110 = 3 and # = 300 is shown in figure 7. The dust
properties are q = 0.5, D = 00ym, C = JOOOJ/(Kgm K). Again, since 9 and C
are identical for all the cases, the equilibrium values approbched tow6rds
the end of the relaxation zone are the same for all the calculated cases. It is
clearly seen from figure 7 that the smaller the material density is. the
shorter the relaxation zone becomes. While it is about 4m for
a = IOOOKgm/m 3 it increases to about 1Om when a is increased to
2500Kgm/m 3.

The gas and the solid particle paths is shown in figure 0 for MO = 3,
= 600, q = 1.0, D = I OOpm, C = I OOOJ/(Kgm K) and a = 1500Kgm/m 3. The

difference between the trajectories is clearly evident. While the gas
particles are deflected immediately upon their passage through the shock
wave (n=O), the solid particles do not change their original direction.
However, behind the shock front the streamlines of the two phases approach
a parallel direction. The results shown in figure 8 indicate that it is
impossible to shape a wedge in a supersonic flow of a dusty gas, in such a
way that it will generate a straight oblique shock wave. This is due to the
fact that a straight oblique shock wave in a dusty gas results in two
different particle trajectories, and no wedge can satisfy these I'Wo profiles.
However, if the wedge surface is sticky, i.e., if it can be assumed that when
a solid particle hits the surface, it sticks to it, then a wedge having a
profile identical to that of the gas particle path might generate a strlight
oblique shock wave. It should be noted, however, that in the case of a sticky
wedge surface, solid particles are drawn away from the suspension and
hence their loading ratio rl could be affected.

The dependence of the equilibrium deflection angle, I9, on the flow

11och number, Mo, is shown in figure 9 for# = 600, 1i I, D = 200pm,
C = IOOOJ/(Kgm K) and a = 150OKgm/m3. It is evident from this figure that
the equilibrium deflection angle increases as the flow Mach number
increases. However, as the flow Mach number reaches high values, the
equilibrium deflection angle Is seen to approach an upper limit.
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It is a common practice to use shock polbrs to study oblique shock
waves. Thus, in the following, shock polars in dusty gas suspension are
presented..

The (P.)-polar for the case MO = 2.5, D = I OO1m, C = 1000 J/(Kgm
K), a = 1500Kgm/rn 3 and various values of rl are shown in figure 10. The
(P,89)-polar in this case represents the conditions at the end of the
relaxation zone, i.e., P = Peq and 8g = 8Geq.As can be seen the equilitnum

pressure, Pcq, becomes higher when q is increased. In addition, the maximum

deflection angle, known as the detachment angle, is also seen to increase
with increasing q. While for a dust-free (pure) gas (i.e., r = 0) (g G )max is

about 290, it reaches a value of about 560 when the loading ratio is r = 2.
A typical (4, %)-polar is shown in figure I I for the same conditions

of figure 10. Here again 89 = OgN. It Is evident from this figure that if a

certain deflection is required, say 200, then as the loading ratio increases
the angle of incidence, #, which is needed to achieve the required deflection,
decreases.

Conclusions
The flow field developed when a supersonic dusty gas suspension

passes through a straight oblique shock wave has been investigated.
The investigation included a formulation of the governing equations of

the flow field at hand and a numerical investigation of the dependence of
the post shock suspension properties on the various physical properties of
the solid particles.
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Part 2

The Flow of a Dust-Gas Suspension with Dust

Having Various Distributions of its Physical Properties

Through a Normal Shock Wave.



Abstract

The effect of distributions of non-uniformities in the diameter, heat
capacity and material density of small spherical particles on the properties
of a dust-gas suspension passing through a normal stationary shock wave is

studied numerically.
It was found that the gas temperature is practically independent of

the size distribution of the dust particles. The suspension pressure,

however, is very sensitive to the size distribution. It rises very sharply
when the suspension contains mainly small particles.

A distribution in the specific heat capacity of the solid particles
results in a minor effect on the velocities and the pressure, and a
pronounced effect on the temperature of the solid particles.

A distribution in the material density of the solid particles affects

both the velocities and the temperatures of the solid and gaseous phases.

Introduction

The interest in the gas-dynamic behaviour of a gas-particle
suspension grew in the past three decades due to its application in many
engineering problems. Some typical examples are: metalized propellants of
rockets, jet-type dust collectors and blast waves in dusty atmospheres. In
addition, mixtures with gases heavily laden with particles occur frequently
in industrial processes such as plastics manufacturing, flour milling, coal-
dust conveying, powder metallurgy and powdered-food processing. General
descriptions of such flows can be found in'several books and review papers
[Soo (1967), Marble (1970) and Rudinger (1973)]

The major differences between the flow fields which are developed
behind a normal shock wave in a dusty-gas and a pure (dust-free) gas are

illustrated in figures la and b for the temperatures and the velocities,
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respectively. When a steady pure gas encounters a normal shock wave it
experiences a sharp (almost discontinuous) change in its thermodynamic and
kinematic properties. This sudden change is shown in figure I to occur
between (0) and (1). The thickness of this disturbance. If. is onlU a few

mean free paths of the gas atoms or molecules. Beyond (1) the gas
properties remain constant (solid lines in figures la and b) provided the gas
conditions at (1) are not sufficient to excite the internal degrees of

freedom of the gas.
If, however, the gas is laden with solid particles then the suspension

which was originally at a state of thermodynamic and kinematic
equilibrium, ahead of the shock front, is suddenly changed into a non-
equilibrium state, because the solid particles, due to their size compareo
with If, do not experience any noticeable change in their properties upon

moving from (0) to (I). Thus, at (1) the gas has a much higher temperature
than the dust, Tg > > Tp, and a much lower velocity, u < < v (u is the gas
velocity and v is the velocity of the solid particles). Morgenthaler (1962)
indicated that this is true even if the particle diameter is as small as 0.1
jim (for shock waves in air at nearly standard conditions, where the mean
free path is about 0.066 ym). Therefore, the particles are not influenced by

the initial disturbance, and the gas properties at (1) can be safely assumed
to be identical to those of a pure gas with the same initial conditions.

Far downstream of (1), i.e., at (co) in figure 1, the gas and the solid
phases reach a new state of thermodynamic and kinematic equilibrium via
momentum and energy exchange. Theoretically all shock waves in dusty
gases are infinitely thick, since equilibrium is approached asymptotically.
However, it is a common practice to assign to the shock wave an effective
thickness which is defined by a requirement that the suspension properties
come close to their equilibrium downstream values. It was shown by
Gottlieb & Coskunses (1985) that the suspension equilibrium properties (at
infinity) can be calculated from the usual normal shock wave relations,
provided that the usual pure gas parameters y and R (the specific heat
capacities ratio and the specific gas constant) are replaced by effective

values Y and R which solely depend on the initial conditions of the

suspension. This effective thickness is known in the literature as the
relaxation zone, for it is analogous to the relaxation zone in pure gases
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where the internal degrees of freedom are excited. The extent of the

relaxation zone strongly depends on the momentum and heat transfer

mechanisms which enable the solid and the gaseous phases to reach a new
equilibrium state. The analysis of the relaxation zone was studied by many

investigators. The pioneering works of Carrier (1958), Kriebel (1964) and

Rudinger (1934) verified the existence of this relaxation zone and identified
the parameters affecting it, namely; the solid particle diameter, D, its heat
capacity, C, its material density, a, and the loading ratio, rj. Igra & Ben-Dor

(1980) compared various correlations for the drag coefficient, CD, and the

heat transfer coefficient, Nu, and pointed out their effect on the extent of
the relaxation zone. In addition they studied the role of thermal radiation

heat transfer between the two phases and showed that it can be neglected

when the incident shock wave Mach number is smaller than five.

In all the above mentioned works, as well as in many others, the

gaseous phase was assumed to behave as a perfect gas. This assumption
was recently relaxed by Ben-Dor & Igra (1982) and Igra & Ben-Dor (1984)

who solved the flow field while accounting for real gas effects.

Dissociating nitrogen was the gaseous phase in the latter work and ionizing
argon in the former.

The assumption that the solid particles are inert, which was also
adopted in most of the published studies, was also relaxed by Elperin, Ben-

Dor& Igra (1986) who solved the flow field of an oxygen-carbon suspension

passing through a normal shock wave, behind which the carbon particles

reached their ignition temperature and burned out.

In the present study, another commonly used assumption concerning

the solid phase is relaxed. It has been a common practice to assume that
the solid phase consists of spherical particles of identical diameter, D,
identical material density, a, and heat capacity. C. In reality, however, this

is not the case, for the particles comprising the solid phase do not have, in
general, a uniform size even though they might have the same physical
properties, i.e., a and C. Furthermore, there could be cases in which the

suspension consists of different solid materials, i.e., a and C.

The purpose of this study is to numerically investigate the influence

of the above mentioned solid phase non-uniformities on the flow field which
is developed behind a normal shock wave.
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In the following, the basic assumptions upon which the present model
is based are given. The assumptions are followed by the governing equations
and the numerical results arising from their solution.

Theoretical Background

Assumptions

The assumptions upon which the present model is based and their
implications are listed in the following:

1) The gaseous phase behaves as an ideal gas. Thus, the equation of state
of the gas is P = pgRTg. Note that it is not assumed here that the gas is
calorically ideal. Alternatively, the dependence of both CP and C. on
the gas temperature is accounted for. This has not been done in
previous studies where both C, and Cv were assumed to be constant.

2) All solid particles are rigid, chemically inert small spheres uniformly
distributed in the gaseous phase. Thus there is no heat addition or
reduction due to chemical processes between the solid and the gaseous
phases. Furthermore, Re and Nu are based on the particle diameter, D.

3) The volume of the solid phase in the suspension can be neglected. Thus
the momentum and energy exchange between the solid particles can be
ignored.

4) Aside from momentum and energy interactions between the gaseous and
the solid phases, the gaseous phase is considered to be a perfect fluid,
i.e., no other viscous or conduction effects are considered.

5) The solid particles are too large to experience any change in their
thermodynamic and dynamic properties upon their passage through the
shock front. In addition they are also large enough not to experience
Brownian motion. Thus, the partial pressure of the solid phase can be
neglected.

6) The solid particles are small enough to satisfy the condition B1 < 0 1,
where Bi is the Biot number, Bi = hr/kp (h is the coefficient of heat
transfer, r is the radius of the particle, and kp is its thermal
conductivity). Thus the temperature within the solid particles can be
assumed to be uniform.
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7) The weight of the solid particles and the buoyancy forces experienced

by them are negligibly small in comparison with the drag forces acting

on them.

8) The heat capacity, C, of the solid particles is constant.

9) Ahead of the normal shock wave the suspension is at a state of
thermodynamic and'dynamic equilibrium, i.e., uo = vo and Tgo = Tpo,

where u and v are the velocities of the gas and the solid particles, and

Tg and Tp are the temperatures of the gas and solid particles,

respectively.
In addition to the above listed assumptions it is assumed that the flow field

under consideration is one-dimensional and steady.

Governing Equations

Prior to listing the governing equations it should be mentioned that

the considered suspension is composed of n + I phases. One phase is the

gaseous phase. The remaining n phases are all solid phases. Each of the n

solid phases consists of identical particles. However, each one of the n

solid phases differ from all the other solid phases in, at least, one of the

following properties; the diameter of the solid particle, D, its material

density, a, or its heat capacity, C.

Based on the foregoing assumptions the governing equations

describing the problem at hand are:

- continuity of the gaseous phase;

pu) =0 ()

- continuity of the i-th solid phase;

dd x Ppi vi ) = 0 i = I to n (2)
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- conservation of momentum of the gaseous phase;

d n

dx (pgu2 + P) = JFIui (3)

- conservation of momentum of the i-th solid phase;

d (ppi v 2 -FIi (4)
dx 2

- conservation of energy of the gaseous phase;

n n
pgu - [CpTg + 1/2 u2 ] = :Qpi + 5FDi Vi (5)Ix p

- conservation of energy of the i-th solid phase;

Pp) ''I -x [Ci Tpi + 1/2 v i = -Qpi - FDi Vi (6)

- equation of state of the gaseous phase;

P = pgRTg (7)

In the above equations pg, u, Tg and P are the density, velocity, temperature
and pressure of the gaseous phase, respectively, Ppi, vi and Tpi are the

spatial density, velocity and temperature of the i-th solid phase,
respectively. Note that the material density of the solid particles is ai

which can be related to the spatial density Ppi via the relation Ppi = ni Vpi ai

where ni is the number density of the i-th solid particle and Vpi is the
volume of a single i-th solid particle. It should also be noted that according

to assumption 5 the partial pressures of all the solid phases are zero. For
this reason P is not only the pressure of the the gaseous phase, but the
pressure of the suspension as well. Cp and R are the specific heat capacity

at constant pressure and the specific gas constant of the gaseous phase and
C1 is the heat capacity of the particles of the i-th solid phase. FDj is the
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drag force per unit volume exerted by the gaseous phase on the particles of
the i-th solid phase and Qpi is the heat transferred per unit volume from the
particles of the i-th solid phase to the gaseous phase.

The drag force FDI can be calculated from:

FD = 3 /4 pgppi (vi - u) I v1 - u I CDi / (Dj a) (3)

where Di is the diameter of the solid particle, ai is their material density,
and CD the drag coefficient is given by

C0 = 0.48 + 28 Rei - 0 -85  (9)

The slip Re number for the i-th solid phase is given by

Rei=pgli - u IDi (10)
Jig

where the dynamic viscosity, yg, depends on the gas temperature, Tg.
The transferred heat, Qpi, can be calculated from:

Qpi = 6hi ppi (Tpi - Tg) / (Di ai) (I )

where hi , the coefficient of convection heat transfer can be obtained from

i (12)Di

Nui is the Nusselt number of the i-th solid phase. It can be obtained from

Nui = 2 + 0.459 Pr0 .33 ReiG .55  (13)

In the last expression Pr is the Prandtl number;

Pr = Y CP (14)

kg

where kg (also in 12) is the thermal conductivity of the gaseous phase.



The above set of governii.g equations consists of 4 + 3n equations
(conservation of mass, momentum and energy for the gaseous phase,
equation of state of the gaseous phase and conservation of moss, momentum
and energy for each of the n solid particles). The number of the unknowns in
the above set of equations is also 4+3n (pg, u, T9 and P for the gaseous phase
and Ppi, vi and .Tpi for each of the n solid phases). Thus the above set of

governing equations is solvable in principle.

Numerical Approach
Computer Code
There are many computational packages capable of numerically

solving differential equations. The one chosen for solving the differential
equations governing the problem at hand is the IMSL (International
Mathematical & Statistical Libraries) package suited to operate on a CDC
Cyber 840 computer. The IMSL package contains three computer codes for
solving differential equations with given initial conditions; they are:
DVERK - based on the Runge-Kutta method, and recommended for cases

where high accuracy is not required and where the derivatives can
be simply calculated.

DGEAR - based on the predictor-corrector method. Although it results in
poor accuracy it is preferable to DVERK when the calculation of
the derivatives is difficult and hence expensive.

DREBS - based on the extrapolation method. Preferable when high
accuracies are required and when the derivatives can be
calculated in a relatively simple and inexpensive way.

The DREBS code was adopted in the present study because it is the
most accurate one. This code performs a triple check of the obtained error
between each two extrapolation steps. Since the DREBS code is limited to
the case where each derivative is independent of the other derivatives the
governing equations need to be rearranged. The rearrangement of the
governing equations (1) to (7) results in;

F - FD u3

dT+ u 2-RTqJ
dx IIIII-u2I (15)
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du !FDi - pqR dx

dx u-RTQ (16)
pg u

d pgR dT Q _ T du A (17)
* dpg dx u ci'xJ

dpg Pg du (18B)
dx = u dx

dTEki -Qpi (19)
dx Ci Ppi vi

dvi FD(20)

dx- Ppi Vi

dpp, - p) dvy (21)
dx - Vi dx

Note that although equations (15) to (21) do not reflect the dependence of
the gas specific heat capacity on its temperature since a space gradient of
Cp does not appear, the value of Cp was calculated at any position x
according to the temperature of that position. This procedure assumes that
the space gradient of Cp is neglectable.

Initial Conditions
As mentioned earlier the properties of the solid phases do not change

when they pass through the normal shock wave. Thus, the solid particles
velocity, vi, temperature Tpi, and spatial density, ppi, immediately behind
the shock front remain identical to their appropriate values ahead of the
shock front, i.e.,

(Vi)l = (v1)o
(Tpj) = (Tpj)o
(ppi)l = (Ppi)O

Furthermore, the multi-phase suspension is assumed to be in
thermodynamic and kinematic equilibrium ahead of the shock front,
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therefore; (vi)o = uo and (Tpi)o = To and (ppi)o = qipgo where qi is the

loading ratio of the i-th solid phase.

The properties of the gas, on the other hand, change almost

discontinuously across the shock wave. The gas properties; immediately
behind the shock front, can simply be calculated from the normal shock jump

conditions, i.e.,

2y2P I 2yMo y- 1 (23)?
*PO - yVlyI

PO I Y+ I Y+20

pgO (Y I)M2 (24)

P+ ( Y - M 2-12 2

Tg-C - 2 (25)

T9O M 2 (y+l) 2

M0 2(y- I)

2 + 2
0= r 

(26)2y 2_
y-l 0O

ul NI z /y iRTgl (27)

NO and MI in the above equations are the flow Mach numbers immediately
ahead and behind the shock front.

The Final Conditions
As mentioned the extent of the relaxation zone in the case of a dusty

gas is infinitely long for the equilibrium values are approached

asymptotically. However, as shown by Gottlieb & Coskunses (1985) the
suspension equilibrium properties at infinity can be calculated very simply

by using the above listed normal shock wave equations [(23) to (27)] and
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replacing y by Y and R by R. In this approach the multi-phase suspension is
assumed to be a single phase gas having new values for y and R. Based on

Gottlieb & Coskunses (1985), the relations for Y and Rare as follows:

lic i _+ (1-my1 i)Cp= nici + (I-Izni)C v  (28)

, = (I-Eni)R (29)

where

PPi (30)
ZPPi + P9

Note that in many papers the loading ratio is defined as qi = pPi/pg. Thus,

the two different definitions can be related by the following expression:

Ti= - (31)
+ I

(It is clear from these relations that if the total loading ratio Xqr and heat

capacity Ci are constant, then y and R are constant and hence the

equilibrium properties at the end of the relaxation zone are identical.) These

new values, i.e., Y and R yield a new speed of sound 5, which satisfies;

ao < ao = (yRgo)1/2

Thus the flow Mach number ahead of the shock wave becomes Mo > Mo. By

replacing y, R and Mo in equations (23) to (27) with Y , r and rio, one can
calculate the equilibrium properties of the suspension at infinity.

The knowledge of the suspension properties at infinity, i.e., the
equilibrium final conditions can serve as an excellent means of checking the



12

reliability of the numerical results since they should be approached
asymptotically.

Since the equilibrium conditions at infinity are known apriori the
integration was terminated when the suspension properties came as close
as 2% of their corresponding equilibrium value. The distance where the
velocities reached this condition is called the kinematic relaxation length,
Iv, and the distance where the temperatures reached this condition is called
the thermal relaxation length, IT. These two relaxation lengths are in
general different.

Physical Properties of the Various Phases
The gaseous phase was chosen to be nitrogen. Yum, Weissman & Mason

(1962) have calculated the transport properties of nitrogen and presented
their results in a tabular form for both the dynamic viscosity, jig, and the
thermal conductivity, kg. A least square polynomial fit to their results
yields the following expressions for kg and jig;

kg[W/(mK)] = 1.386 X10 - 2 + 5.311 x 10- 5 Tg - 9.822 x 10-10 T2

g
and

pg[Kgm/(m sec)] = 0.7226 x 10-5 + 2.768 x I0-8 Tg-0.5933 x 10-1 T12
g

The expression for the specific heat capacity at constant pressure, Cp, was
adopted from Sontag & Van-Wylen (1971);

CPIm2/(sec 2 K)] = 1.3686 x 103 - 2.786 x 105 T- + 5.1741 x 107 T 2

9 g

In the above expression Tg is in degree K.
Five solid phases were chosen in order to numerically simulate the

effect of non-uniformities of the solid particles on the flow field. Thus, in
equations (18) and (20) n = 5 and each of equations (15) to (17) represents
five equations with i = 1, 2, ..., 5.

Each solid phase is identified by three parameters. The diameter of
its particles, Di, the heat capacity of its particles Ci and their material
density, ai.
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Nine different cases (for MO = 1.5) were investigated. They are shown
in tables I to 3. In table I all the five solid phases have the same material
density al = a =... = a5 = a and heat capacity C1 = C2 = ... = C5 C but
different particle diameters DI = 5pm, D2 = 7.5j m, D3 = 10Jm, D4 = 25m
and D5 = 50m. The seven cases differ in the loading ratios of the various

solid phases.
The partial loading ratios qi are chosen in such a way that the total

5
loading ratios for each case, i.e, qtotl = Irli equals always 0.2.

Thus, for all the seven cases, the suspension properties should reach
the same equilibrium values at the end of the relaxation zone.

In the case shown in table 2 also for MO = 1.5, the five solid phases
have identical particle diameters, D = 50pm and material densities, a =
1500 Kgm/m 3, but different heat capacities C1 = 100, C2 = 500, C3 = 1000,
C4 = 5,000 and CS = 10000 J/(Kgm K). The loading ratio of each solid phase
is r 0.04 and therefore the total loading ratio is again 0.2.

The last case is shown in table 3. Here all the solid phases have
identical particle diameters, D = 10lm and heat capacities, C = 1000
J/(Kgm K), but different material densities, al = 1000, C2 

= 1250, J3 =

1500, G4 = 1750 and aS = 2000 Kgm/m 3. The incident shock wave Mach
number is again MO = 1.5 and the total loading ratio is 0.2 (ri = 0.04 for each

solid phase).

Numerical Results and Discussions
Distribution of the Diameter of the Dust Particles

Figures 2 to 7 illustrate the flow field properties which are
developed behind a normal shock wave with MO = 1.5 in cases I to 6,
respectively (see table I). Each of these six figures contains six velocity
and six temperature profiles (one for the gaseous phase labelled with 'G"
and five for each of the five solid phases labelled "I" to "5" in accordance
with table I) and one pressure profile. The dashed lines in the right hand
sides of figures 2 to 7 indicate the equilibrium values at infinity, which
should be approached asymptotically. As mentioned earlier these values are
calculated apriori.
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It is clear from figures 2 to 7 that the larger the particle diameter
is, the longer it takes for it to reach a dynamic equilibrium. This is due to

the fact that the inertial forces depend on D while the drag forces are
2roughly proportional to D Thus the effectiveness of the drag forces in

slowing down the solid particles decreases as the diameter of the solid
particles increases. The solid phase with the larger particles is also the
last to reach thermal equilibrium with the gaseous phase. This is not
surprising since the larger the solid particle is, the slower will be its

temperature rise. Thus the solid phase with the smallest particles (D
51rm) reaches a thermal equilibrium with the gaseous phase within few

centimeters while it takes tens of centimeters for the solid phase with the

largest particles.

The velocity, temperature and pressure profiles of the gaseous phase
for cases I to 6 are shown in figure 6. It is clearly seen in figure 8 that all
the six cases approach asymptotically, identical equilibrium properties at

infinity. This fact should not be surprising for the total loading ratio in all
the six cases is -9 = 0.2 and the heat capacity of the solid particles is the

same. Although the equilibrium properties are identical, the flow
properties inside the relaxation zone do depend on the size distribution of
the particles of each solid phase. The dependence is minimal for the gas
temperature where the six profiles merge into an almost one curve, and it is

maximal for the suspension pressure. The suspension pressure increases
very sharply when it consists mainly of small particles (case 5) and it

increases very slowly when it consists mainly of large particles (case 6).
Thus it can be concluded that increasing the mass fraction of the small
solid particles in the suspension results in a faster rise in the suspension

pressure. Similarly, the suspension with the largest amount of small
particles results in the sharpest decrease in the gaseous phase velocity. The
suspension with the largest amount of large particles, experiences the
smallest decrease in the gaseous phase velocity. It is interesting to note
that the gaseous phase velocity falls from its value immediately behind the
shock front in spite of the fact that it exchanges momentum with the solid

phases which have much higher post shock velocities. The reason for this
peculiar behaviour lies in the fact that the dust presence causes a very
large increase in the density of the gaseous phase. This in turn results in a



large decrease in the gaseous phase velocity since the flow field is one
dimensional and piu must remain constant.

The general shapes of the various property profiles, for the six cases
of multi-solid-phases, are similar to those obtained when' the suspension
contains a single-solid-phase only, i.e., case 7 in table 1, whose solution is
seen in figure 9. -Since for this case TI = 0.2 too, the equilibrium properties

at infinity are identical to those shown in figures 2 to 7.
The thermal and kinematic relaxation lengths for cases I to 7 are

given in table 4. The earlier remark that the temperature of the gaseous

phase is almost unaffected by the size distribution of the particles of the
solid phases (see figure 8, where all the temperature profiles merge into a
single line at a very short distance behind the shock fronts) is further
supported by the fact that the thermal relaxation length IT is almost the
same for the six multi-phase cases.

The difference between the kinematic relaxation lengths, ly, is much
larger. The two extreme cases, 5 & 6, differ by about 8.5%. Note that the
difference in the thermal relaxation length between the two extreme cases

is only about 1.5%.
However, the difference in both the thermal and kinematic relaxation

lengths between the multi-solid phases (case I to 6) and the single-solid

phase (case 7) is enormous. Both IT and ly are more than 90% smaller when
the suspension contains a single solid phase with D = 10lm. It is obvious

that the enormous increase in both IT and ly when the suspension contains a
size distributed solid phase arises from the presence of the large particles,
D = 50pm, in the six cases. This is due to the fact that the large particles

slow down and heat up very slowly in comparison with smaller particles.

Thus it can be concluded that the extent of the relaxation zone is

determined solely by the solid particle having the largest diameter.

Distribution of the Heat Capacity of the Dust Particles
Case 8 (table 2) in which the solid particles of the five phases have

identical diameters D = 50pjm and material density a = 1500 Kgm/rr 3 but

different heat capacities, C, were solved. The results are shown in figure

10 for Mo = 1.5.
It is evident from figure 10 that in spite of the fact that the heat

capacity, C, of each of the solid phases is different, they all have the same
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velocity and pressure inside the relaxation zone. Thus, the heat capacity
has no affect on the velocities of the solid particles and the gaseous phases
and does not affect the suspension pressure. However, the five solid phases
have different temperature profiles. The temperature of the solid particles
with the highest value of C experiences the slowest increase. For the
smallest value of C the temperature rise of the solid particles is extremely
sharp. It overshoots the temperature of the gaseous phase before it drops
down to the equilibrium value at infinity.

The thermal and kinematic relaxation lengths, IT and ly, are also
shown in table 4 for this case (case 8). The large values for IT arise from
the fact that it takes a long time for the solid phase with the largest heat
capacity to reach equilibrium with the gaseous phase because their
temperature rise is very slow. The large values for the kinematic
relaxation length are due to the fact that the diameter of all the solid
particles was chosen to be D = 50ym for this case.

Distribution of the Material Density of the Dust Particles
Case 9 (table 3) in which the solid particles of the five phases have

identical diameters D = lOjLm and heat capacities C = 1000 J "Kgm K) but
different material densities is shown in figure I I for No = 1.5. Case 7
which has identical values of D and C, as well as the total loading ratios of

= 0.2, but a constant value of a = 1500 Kgm/m 3 is added to figure II in
dashed lines.

The solid lines in figure II indicate that the distribution in the solid
particles density results in a decrease in the gas pressure, temperature and
velocity gradients behind the shock front. The equilibrium values, however,
at infinity are identical for the two cases. In addition it is evident from
figure I I that the larger the material density of the dust particles is, the
slower its decay becomes. This is so because its inertia depends linearly on
the material density. Similarly, the larger the material density of the dust
is, the slower its temperature rise becomes, because it has a higher heat
capacity. The effect of the distribution in the material density of the dust
particles on the thermal and kinematic relaxation lengths, IT and ly,
respectively, can be seen by comparing cases 7 & 9 in table 4. For the

MO = 1.5 case (7 & 9) both IT and IV increase by about 25%.
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Conclusions
The flow field which is developed behind a steady normal shock wave

in a dust-gas suspension has been solved numerically while accounting for
distributions of non-uniformities in the physical properties of the solid
phase. The model was bared on a multi-phase system which consists of one
gaseous phase and five solid phases. The five solid phases differed from
each other by one physical property only, which was either the diameter of
the solid particles or their heat capacity or their material density.

For a fixed total loading ratio it was found that the gas temperature
profile downstream of the shock wave is practically independent of the
size distribution of the dust particles. This might also be a result of the
relatively small loading ratio which was used in the calculation.
Consequently, it should not necessarily hold for an arbitrary loading ratio.
The suspension pressure profile, however, is very sensitive to the size
distribution. The suspension pressure rises very sharply when the
suspension contains mostly small particles. Similarly the suspension with
the largest amount of small particles results in the sharpest decrease in
the velocity of the gaseous phase.

A distribution in the heat capacity of the solid particles resulted in a
minor effect on the velocity of the solid particles and practically no effect
on the suspension pressure. The effect on the temperature of solid particles
was much more pronounced. As expected, the particles with the smaller heat
capacity were heated faster and their temperature reached that of the
gaseous phase earlier than those having larger heat capacities.

A distribution in the material density of the solid particles resulted
in different velocity and temperature profiles for each of the five solid
phases, and a slower rise in the suspension pressure.
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Figure Captions
Figure 1: Shock wave structure in pure and dusty gases
Figure 2: Flow field for case I of table I
Figure 3: Flow field for case 2 of table I
Figure 4: Flow field for case 3 of table I
Figure 5: Flow field for case 4 of table I
Figure 6: Flow field for case 5 of table I
Figure 7: Flow field for case 6 of table I
Figure 8: Gas properties for cases I to 6
Figure 9: Flow field for case 7 of table I
Figure 10: Flow field for case 8 of table 2
Figure 11: Flow field for case 9 of table 3
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Table 1: Tu loaing rasTI of te rious si puti:les for

a = 1500 KgTdm 3 uM C = 1000 JKgmK)

Djx 106 [m] Case Number

5 7.5 10 25 5o 0 i

i 2 3 4 5 1.5

0.04 0.04 0.04 0.04 0.04 1

0.03 0.04 0.06 0.04 0.03 2

0.06 0.05 0.04 0.03 0.02 3

0.02 0.03 0.04 0.05 0.06 4

0.099 0.06 0.03 0.01 0.001

0.001 0.01 0.03 0.06 0.099 6
- - 0.20 - 7
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*Table 2: The specific heat capacities, C, of the five Yarious solid phases.
For all the solid phases

Mo =1.5, D = 50 X 10- 6M, a = 1500 Kgm/m 3. T, = 0.04

C1iJ/(Kgm K)J

1 2 3 4 5 Case Number

100 500 1000 5000 10000 B
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Table 3: The dust material densities, ai, of the five various solid phases.

For all the solid phases
Mo = 1.5, D = 10 X0"6m, C = 1000 J/(Kgm K),Q 0.04

i[Kgm/m 3 ]

1 2 3 4 5 Case Number

1000 1200 1500 1750 2000 9
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Table 4: The thermal, IT, and kinematic, IV, relaxation lengths for the 9

cases in Tables 1, 2 and 3

Initial Condition Case IT [m] tlV [m]
in Table Number

1 1.91 3.83
2 1.91 3.80

3 1.90 3.75

1 4 1.92 3.90
5 1.89 3.72
6 1.92, 4.05
7 0.13 0.31

2 a 37.1 10.4

3 9 0.162 0.39
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